Iron depletion in frequently donating whole blood donors

B. Mayer, H. Radtke
Iron: relevance

• oxygen-transporting and storage proteins
 – hemoglobin and myoglobin
• iron-containing centers in many enzymes
 – mitochondrial respiratory chain
 – DNA-synthesis
• immune system: regulatory functions
 – immune cell proliferation
 – cytokine activities (e. g. IFN-γ effector pathway)
Depletion in storage iron

• Iron deficiency (ID)
 – Iron depletion phase (prelatent ID)
 ♦ reduced iron stores
 – Iron deficient erythropoiesis (latent ID)
 ♦ serum iron (functional department) decreased
 ♦ iron deficient erythropoiesis, no anemia
 – Iron deficiency anaemia
 ♦ Hb < 12 g/dL (♀), < 13 g/dL (♂) [WHO]
Iron deficiency: symptoms

• Iron deficiency anemia
 – Impaired physical capacity
 • reduced tissue oxygen

• Non anemia related symptoms
 – Impaired cognitive function
 • Impaired attention span
 • Decline of short term memory
 • Impaired learning ability
 • Impaired cognitive function
 – Impaired athletic performance
Iron loss from blood donation

• 1ml blood contains about 0.5 mg of iron
• Whole blood donation:
 – collection volume: 495 ml + 30 ml
 – loss of 220 - 290 mg iron, corresponding to about 6% (male) and 10% (females) of total body iron
• Plasmapheresis:
 – blood volume lost: 15 ml + 30 ml
 – loss of 20 - 25 mg iron
Iron balance

- dietary iron: 10 - 20 mg / day
 - only 20% of dietary iron is absorbed
 - maximum iron absorption: 3 – 4 mg/day
 - physiological iron loss:
 - 1 mg/day in men and postmenopausal women
 - additional 0.5 (- 1.2) mg/day in menstruating females
Compensating iron loss from blood donation

- iron compensation / donation interval:
 - 80 – 120 days (♂), 110 – 150 days (♀)
 - Minimum donation interval according to German guidelines: 2 months (♂) or 3 months (♀)
 - negative iron balance at more than 3 – 4 donations (♂) or 1 – 2 donations (♀) per year

- incidence of iron deficiency in regular blood donors:
 - up to 20% in male donors
 - up to 40% in female donors
Responsibilities of Transfusion Medicine

• sufficient blood supply
 – optimal „utilization“ of volunteers willing to give blood

• donor safety
 – determination of Hb prior to blood donation
 – deferral of donors with iron deficiency anemia
 • (permanent) loss of donors due to short term deferral
 – compensation of iron loss by supplementation
 • adverse effects of iron medication (GI-system 20%)
 • missing underlying disease (hemochromatosis, GI-bleeding)
 • change in blood center - donor relationship
Prevention of iron deficiency by iron supplementation

- studies on menstruating women:
 - administration of 39 mg of elemental iron daily allowed menstruating woman to donate every 8 weeks without significant iron depletion (Simon et al. 1984)

- iron compensation with a lower dose possible?

- can donation frequency or volume be increased?
Laboratory evaluation of body iron

• Serum Ferritin
 – intracellular iron storage protein
 – Serum ferritin level correlates with body iron stores
 ✷ 1 µg/l equivalent to 8 -10 mg of storage iron
 ✷ Ferritin < 12 µg/l: indicate complete depletion of iron stores
 – acute phase reactant: false high values in malignancies, infections, liver disease

• Serum Transferrin Receptor (TfR)
 – proportional to cellular expression of the transferrin receptor
 – reflects functional iron compartment / iron-deficient erythropoiesis
 – assay is not standardized!
$\log(\text{TfR/F})$

- quantitative phlebotomy
- inverse linear relationship between logarithm of the ratio of the soluble transferrin receptor to ferritin concentration (TfR/F) and body iron

Skikne et al. Blood. 1990;75:1870-1876
Iron supplementation in blood donors (1) study design

- placebo-controlled, double-blind study
- 526 regular blood donors (289 ♂, 237 ♀)
 - iron supplementation:
 - 40 mg, 20 mg or 0 mg per day of elemental iron (ferrous-gluconate)
 - ascorbic acid and other vitamins
 - whole blood donation:
 - 4 donations every 8 weeks (♂)
 - 3 donations every 12 weeks (♀)
 - deferral if Hb < 13,5 mg/dL (♂), < 12,5 mg/dL (♀)
 - 237 drop outs (45%)
Iron supplementation in blood donors (1) serum ferritin

![Diagram showing ferritin levels in males and females with different iron supplementations.](image)
Iron supplementation in blood donors (1)

$\log(TfR/F)$

deferral (Hb):

- Males: $n = 3$ vs. 2 vs. 9; $p = 0.022$
- Females: $n = 1$ vs. 2 vs. 10; $p = 0.001$
Iron supplementation in blood donors (1)
frequency of adverse effects

<table>
<thead>
<tr>
<th>adverse effect</th>
<th>40 mg iron</th>
<th>20 mg iron</th>
<th>Placebo only</th>
</tr>
</thead>
<tbody>
<tr>
<td>gastrointestinal complaints</td>
<td>9.4 %</td>
<td>10.7 %</td>
<td>8.4 %</td>
</tr>
<tr>
<td>signs of anemia</td>
<td>1.7 %</td>
<td>1.1 %</td>
<td>2.2 %</td>
</tr>
<tr>
<td>other symptoms</td>
<td>13.3 %</td>
<td>6.2 %</td>
<td>8.4 %</td>
</tr>
</tbody>
</table>

No significant difference between groups
Iron supplementation in blood donors (2)
study design

• open study:
 165 regular blood donors (83 ♂, 82 ♀)
 – whole blood donation on day 0
 • follow-up after two months (♂)
 • follow-up after three months (♀)
 – iron supplementation:
 • 20 mg per day of elemental iron (ferrous-gluconate) for
 30 days (total dose 600 mg)
 • ascorbic acid and other vitamins
 – 66 drop outs (40%)
Iron supplementation in blood donors (2)
Increasing donation frequency
study design

- placebo-controlled double-blind study: 260 participants (247 ♂, 3 ♀)
 - regular blood donors, body weight ≥ 68 kg, Hb ≥ 14,5 g/dl
 - 2-unit RBC apheresis at intervals of 8 - 10 weeks
 - Haemonetics MCS+, protocol SDR
 - iron supplementation: daily 100 mg of iron(II) or placebo, respectively
Increasing donation frequency
study design

- Group A: iron from visit 0-3, placebo from visit 3-6,
 Group B: placebo from visit 0-3, iron from visit 3-6
- Deferral if Hb < 14 g/dl
- 66 dropouts (25%)
Increasing donation frequency
serum ferritin

deferral (Hb): 18% of 1519 visits (placebo: 186, iron: 82; p<0.001)
Increasing donation frequency
frequency of adverse effects

<table>
<thead>
<tr>
<th>adverse effects</th>
<th>Iron treatment</th>
<th>Placebo treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>gastrointestinal complaints</td>
<td>8,7%</td>
<td>5,2%</td>
</tr>
<tr>
<td>signs of anemia</td>
<td>3,9%</td>
<td>3,9%</td>
</tr>
<tr>
<td>other symptoms</td>
<td>5,7%</td>
<td>8,2%</td>
</tr>
</tbody>
</table>

No significant difference between groups
Conclusion

• 20 mg iron for 30 days (total dose 600 mg) adequately compensates for iron loss from whole blood donation
• 100 mg iron daily compensates a substantial increase in donation frequency
• tolerance of iron supplementation was good
• limited supplementation (study 2) less likely to obscure underlying disease
• the form of iron used (study 1,2) meets the European Community criteria for dietary foods for special medical purposes
Thank you